New strategies to extract weak phases from neutral B decays

Robert Fleischer

Theory Division, CERN, CH-1211 Geneva 23, Switzerland

Received: 3 October 2003 / Accepted: 22 October 2003 / Published Online: 25 October 2003 – © Springer-Verlag / Società Italiana di Fisica 2003

Abstract. We discuss new, theoretically clean strategies to determine the angle γ of the unitarity triangle from $B_d \to DK_{\rm S(L)}$, $B_s \to D\eta^{(')}$, $D\phi$, ... decays, and point out that $B_s \to DK_{\rm S(L)}$ and $B_d \to D\pi^0$, $D\rho^0$, ... modes allow very interesting determinations of the $B_q^0 - \overline{B_q^0}$ mixing phases ϕ_s and ϕ_d , respectively. Their colour-allowed counterparts $B_s \to D_s^{(*)\pm} K^{\mp}$, ... and $B_d \to D^{(*)\pm} \pi^{\mp}$, ... also offer new methods to probe γ .

PACS. 12.15.Hh - 13.25.Hw

1 Introduction

The time-dependent CP asymmetries of neutral B_q -meson decays $(q \in \{d, s\})$ into CP eigenstates, which satisfy $(\mathcal{CP})|f\rangle = \pm |f\rangle$, provide valuable information [1]:

$$\frac{\Gamma(B_q^0(t) \to f) - \Gamma(B_q^0(t) \to f)}{\Gamma(B_q^0(t) \to f) + \Gamma(\overline{B_q^0}(t) \to f)} = \frac{\mathcal{A}_{\rm CP}^{\rm dir}\cos(\Delta M_q t) + \mathcal{A}_{\rm CP}^{\rm mix}\sin(\Delta M_q t)}{\cosh(\Delta \Gamma_q t/2) - \mathcal{A}_{\Delta\Gamma}\sinh(\Delta \Gamma_q t/2)}.$$
(1)

Here the CP-violating observables

$$\mathcal{A}_{\rm CP}^{\rm dir} \equiv \frac{1 - |\xi_f^{(q)}|^2}{1 + |\xi_f^{(q)}|^2} \quad \text{and} \quad \mathcal{A}_{\rm CP}^{\rm mix} \equiv \frac{2 \,{\rm Im}\,\xi_f^{(q)}}{1 + |\xi_f^{(q)}|^2} \quad (2)$$

originate from "direct" and "mixing-induced" CP violation, respectively, and are governed by

$$\xi_f^{(q)} = -e^{-i\phi_q} \left[\frac{A(\overline{B_q^0} \to f)}{A(B_q^0 \to f)} \right], \tag{3}$$

where

$$\phi_q \stackrel{\text{SM}}{=} 2 \arg(V_{tq}^* V_{tb}) = \begin{cases} +2\beta & (q=d) \\ -2\lambda^2 \eta & (q=s) \end{cases}$$
(4)

is the CP-violating weak $B_q^0 - \overline{B_q^0}$ mixing phase. The width difference $\Delta \Gamma_q$, which may be sizeable in the q = s case, offers another observable $\mathcal{A}_{\Delta\Gamma}$, which is, however, not independent from those in (2), and can be extracted from the following "untagged" rates:

$$\langle \Gamma(B_q(t) \to f) \rangle \equiv \Gamma(B_q^0(t) \to f) + \Gamma(\overline{B_q^0}(t) \to f) \propto \left[\cosh(\Delta \Gamma_q t/2) - \mathcal{A}_{\Delta \Gamma} \sinh(\Delta \Gamma_q t/2) \right] e^{-\Gamma_q t}.$$
 (5)

$2 B_d \rightarrow DK_{S(L)}, B_s \rightarrow D\eta^{(\prime)}, D\phi, ...$ and $B_s \rightarrow DK_{S(L)}, B_d \rightarrow D\pi^0, D\rho^0, ...$

Let us consider in this section $B_q^0 \to D^0 f_r$ transitions, where $r \in \{s, d\}$ distinguishes between $b \to Ds$ and $b \to Dd$ processes [2,3]. If we require $(\mathcal{CP})|f_r\rangle = \eta_{CP}^{f_r}|f_r\rangle$, B_q^0 and $\overline{B_q^0}$ mesons may both decay into $D^0 f_r$, thereby leading to interference effects between $B_q^0 - \overline{B_q^0}$ mixing and decay processes, which involve the weak phase $\phi_q + \gamma$:

- For r = s, i.e. $B_d \to DK_{S(L)}, B_s \to D\eta^{(\prime)}, D\phi, ...,$ these effects are governed by a hadronic parameter $x_{f_s}e^{i\delta_{f_s}} \propto R_b \approx 0.4$, and are hence favourably large. - For r = d, i.e. $B_s \to DK_{S(L)}, B_d \to D\pi^0, D\rho^0$..., these effects are tiny because of $x_{f_d}e^{i\delta_{f_d}} \propto -\lambda^2 R_b \approx -0.02$.

2.1 $B_d \rightarrow DK_{S(L)}$, $B_s \rightarrow D\eta^{(')}, D\phi, ...$

Let us first focus on r = s. If we make use of the CP eigenstates D_{\pm} of the neutral *D*-meson system satisfying $(\mathcal{CP})|D_{\pm}\rangle = \pm |D_{\pm}\rangle$, we obtain additional interference effects between $B_q^0 \to D^0 f_s$ and $B_q^0 \to \overline{D^0} f_s$ at the decay-amplitude level, which involve γ . The most straightforward observable we may measure is the "untagged" rate

$$\langle \Gamma(B_q(t) \to D_{\pm}f_s) \rangle \equiv \Gamma(B_q^0(t) \to D_{\pm}f_s) + \Gamma(\overline{B_q^0}(t) \to D_{\pm}f_s) \stackrel{\Delta\Gamma_q=0}{=} \left[\Gamma(B_q^0 \to D_{\pm}f_s) + \Gamma(\overline{B_q^0} \to D_{\pm}f_s) \right] e^{-\Gamma_q t} \equiv \langle \Gamma(B_q \to D_{\pm}f_s) \rangle e^{-\Gamma_q t},$$

$$(6)$$

providing the following "untagged" rate asymmetry:

$$\Gamma_{+-}^{f_s} \equiv \frac{\langle \Gamma(B_q \to D_+ f_s) \rangle - \langle \Gamma(B_q \to D_- f_s) \rangle}{\langle \Gamma(B_q \to D_+ f_s) \rangle + \langle \Gamma(B_q \to D_- f_s) \rangle}.$$
 (7)

Interestingly, already this quantity offers valuable information on γ , since bounds on this angle are implied by

$$|\cos\gamma| \ge |\Gamma_{+-}^{f_s}|.\tag{8}$$

Moreover, if we fix the sign of $\cos \delta_{f_s}$ with the help of the factorization approach, we obtain

$$\operatorname{sgn}(\cos\gamma) = -\operatorname{sgn}(\Gamma_{+-}^{f_s}),\tag{9}$$

i.e. we may decide whether γ is smaller or larger than 90°. If we employ, in addition, the mixing-induced observables $S_{\pm}^{f_s} \equiv \mathcal{A}_{\rm CP}^{\rm mix}(B_q \to D_{\pm}f_s)$, we may determine γ . To this end, it is convenient to introduce the quantities

$$\langle S_{f_s} \rangle_{\pm} \equiv \frac{S_{\pm}^{f_s} \pm S_{-}^{f_s}}{2}.$$
 (10)

Expressing the $\langle S_{f_s} \rangle_{\pm}$ in terms of the $B_q \to D_{\pm} f_s$ decay parameters gives rather complicated formulae. However, complementing the $\langle S_{f_s} \rangle_{\pm}$ with $\Gamma_{+-}^{f_s}$ yields

$$\tan\gamma\cos\phi_q = \left[\frac{\eta_{f_s}\langle S_{f_s}\rangle_+}{\Gamma_{+-}^{f_s}}\right] + \left[\eta_{f_s}\langle S_{f_s}\rangle_- - \sin\phi_q\right], \quad (11)$$

where $\eta_{f_s} \equiv (-1)^L \eta_{\text{CP}}^{f_s}$, with L denoting the Df_s angular momentum [2]. If we use this simple – but *exact* – relation, we obtain the twofold solution $\gamma = \gamma_1 \vee \gamma_2$, with $\gamma_1 \in [0^\circ, 180^\circ]$ and $\gamma_2 = \gamma_1 + 180^\circ$. Since $\cos \gamma_1$ and $\cos \gamma_2$ have opposite signs, (9) allows us to fix γ unambiguously. Another advantage of (11) is that $\langle S_{f_s} \rangle_+$ and $\Gamma_{+-}^{f_s}$ are both proportional to $x_{f_s} \approx 0.4$, so that the first term in square brackets is of $\mathcal{O}(1)$, whereas the second one is of $\mathcal{O}(x_{f_s}^2)$, hence playing a minor rôle. In order to extract γ , we may also employ D decays into CP non-eigenstates f_{NE} , where we have to deal with complications originating from $D^0, \overline{D^0} \to f_{\text{NE}}$ interference effects [4]. Also in this case, $\Gamma_{+-}^{f_s}$ is a very powerful ingredient, offering an efficient, analytical strategy to include these interference effects in the extraction of γ [3].

2.2 $B_s ightarrow DK_{ m S(L)}$, $B_d ightarrow D\pi^0, D ho^0, ...$

The r = d case also has interesting features. It corresponds to $B_s \to DK_{\rm S(L)}, B_d \to D\pi^0, D\rho^0$... decays, which can be described through the same formulae as their r = s counterparts. Since the relevant interference effects are governed by $x_{f_d} \approx -0.02$, these channels are not as attractive for the extraction of γ as the r = s modes. On the other hand, the relation

$$\eta_{f_d} \langle S_{f_d} \rangle_{-} = \sin \phi_q + \mathcal{O}(x_{f_d}^2) = \sin \phi_q + \mathcal{O}(4 \times 10^{-4})$$
(12)

offers very interesting determinations of $\sin \phi_q$ [2]. Following this avenue, there are no penguin uncertainties, and the theoretical accuracy is one order of magnitude better than in the "conventional" $B_d \rightarrow J/\psi K_{\rm S}$, $B_s \rightarrow J/\psi \phi$ strategies. In particular, $\phi_s^{\rm SM} = -2\lambda^2 \eta$ could, in principle, be determined with a theoretical uncertainty of only $\mathcal{O}(1\%)$, in contrast to the extraction from the $B_s \rightarrow J/\psi \phi$ angular distribution, which suffers from generic penguin uncertainties at the 10% level.

3
$$B_s o D_s^{(*)\pm}K^{\mp},...$$
 and $B_d o D^{(*)\pm}\pi^{\mp},...$

Let us now consider the colour-allowed counterparts of the $B_q \to Df_q$ modes discussed above, which we may write generically as $B_q \to D_q \overline{u}_q$ [5]. The characteristic feature of these transitions is that both a B_q^0 and a $\overline{B_q^0}$ meson may decay into $D_q \overline{u}_q$, thereby leading to interference between $B_q^0 - \overline{B}_q^0$ mixing and decay processes, which involve the weak phase $\phi_q + \gamma$:

- In the case of q = s, i.e. $D_s \in \{D_s^+, D_s^{*+}, ...\}$ and $u_s \in \{K^+, K^{*+}, ...\}$, these effects are favourably large as they are governed by $x_s e^{i\delta_s} \propto R_b \approx 0.4$. - In the case of q = d, i.e. $D_d \in \{D^+, D^{*+}, ...\}$ and

- In the case of q = d, i.e. $D_d \in \{D^+, D^{*+}, ...\}$ and $u_d \in \{\pi^+, \rho^+, ...\}$, the interference effects are described by $x_d e^{i\delta_d} \propto -\lambda^2 R_b \approx -0.02$, and hence are tiny.

We shall only consider $B_q \to D_q \overline{u}_q$ modes, where at least one of the D_q , \overline{u}_q states is a pseudoscalar meson; otherwise a complicated angular analysis has to be performed.

It is well known that such decays allow determinations of the weak phases $\phi_q + \gamma$, where the "conventional" approach works as follows [6,7]: if we measure the observables $C(B_q \to D_q \overline{u}_q) \equiv C_q$ and $C(B_q \to \overline{D}_q u_q) \equiv \overline{C}_q$ provided by the $\cos(\Delta M_q t)$ pieces of the time-dependent rate asymmetries, we may determine x_q from terms entering at the x_q^2 level. In the case of q = s, we have $x_s = \mathcal{O}(R_b)$, implying $x_s^2 = \mathcal{O}(0.16)$, so that this may actually be possible, although challenging. On the other hand, $x_d = \mathcal{O}(-\lambda^2 R_b)$ is doubly Cabibbo-suppressed. Although it should be possible to resolve terms of $\mathcal{O}(x_d)$, this will be impossible for the vanishingly small $x_d^2 = \mathcal{O}(0.0004)$ terms, so that other approaches to fix x_d are required [6]. In order to extract $\phi_q + \gamma$, the mixing-induced observables $S(B_q \rightarrow$ $D_q \overline{u}_q) \equiv S_q$ and $S(B_q \to \overline{D}_q u_q) \equiv \overline{S}_q$ associated with the $\sin(\Delta M_q t)$ terms of the time-dependent rate asymmetries must be measured, where it is convenient to introduce

$$\langle S_q \rangle_{\pm} \equiv \frac{\overline{S}_q \pm S_q}{2}.$$
 (13)

If we assume that x_q is known, we may consider

$$s_{+} \equiv (-1)^{L} \left[\frac{1 + x_{q}^{2}}{2x_{q}} \right] \langle S_{q} \rangle_{+} = +\cos \delta_{q} \sin(\phi_{q} + \gamma)$$
(14)
$$s_{-} \equiv (-1)^{L} \left[\frac{1 + x_{q}^{2}}{2x_{q}} \right] \langle S_{q} \rangle_{-} = -\sin \delta_{q} \cos(\phi_{q} + \gamma),$$
(15)

yielding

$$\sin^2(\phi_q + \gamma) = \frac{1 + s_+^2 - s_-^2}{2} \pm \sqrt{\frac{(1 + s_+^2 - s_-^2)^2 - 4s_+^2}{4}},$$
(16)

which implies an eightfold solution for $\phi_q + \gamma$. If we fix the sign of $\cos \delta_q$ with the help of factorization, a fourfold discrete ambiguity emerges. Note that this assumption allows us to extract also the sign of $\sin(\phi_q + \gamma)$ from $\langle S_q \rangle_+$, which is of particular interest, as discussed in [5]. To this end, the factor $(-1)^L$, where L is the $D_q \overline{u}_q$ angular momentum, has to be properly taken into account. Let us now discuss the new strategies to explore the $B_q \rightarrow D_q \overline{u}_q$ modes proposed in [5]. If $\Delta \Gamma_s$ is sizeable, the time-dependent "untagged" rates introduced in (5)

$$\langle \Gamma(B_q(t) \to D_q \overline{u}_q) \rangle = \langle \Gamma(B_q \to D_q \overline{u}_q) \rangle e^{-\Gamma_q t}$$
(17)

$$\times \left[\cosh(\Delta \Gamma_q t/2) - \mathcal{A}_{\Delta \Gamma}(B_q \to D_q \overline{u}_q) \sinh(\Delta \Gamma_q t/2) \right]$$

and their CP conjugates provide $\mathcal{A}_{\Delta\Gamma}(B_s \to D_s \overline{u}_s) \equiv \mathcal{A}_{\Delta\Gamma_s}$ and $\mathcal{A}_{\Delta\Gamma}(B_s \to \overline{D}_s u_s) \equiv \overline{\mathcal{A}}_{\Delta\Gamma_s}$, which yield

$$\tan(\phi_s + \gamma) = -\left[\frac{\langle S_s \rangle_+}{\langle \mathcal{A}_{\Delta\Gamma_s} \rangle_+}\right] = +\left[\frac{\langle \mathcal{A}_{\Delta\Gamma_s} \rangle_-}{\langle S_s \rangle_-}\right], \quad (18)$$

where the $\langle \mathcal{A}_{\Delta\Gamma_s} \rangle_{\pm}$ are defined in analogy to (13). These relations allow an unambiguous extraction of $\phi_s + \gamma$ if we fix again the sign of $\cos \delta_q$ through factorization. Another important advantage of (18) is that we do *not* have to rely on $\mathcal{O}(x_s^2)$ terms, as $\langle S_s \rangle_{\pm}$ and $\langle \mathcal{A}_{\Delta\Gamma_s} \rangle_{\pm}$ are proportional to x_s . On the other hand, we need a sizeable value of $\Delta\Gamma_s$. Measurements of untagged rates are also very useful in the case of vanishingly small $\Delta\Gamma_q$, since the "unevolved" untagged rates in (17) offer various interesting strategies to determine x_q from the ratio of $\langle \Gamma(B_q \to D_q \overline{u}_q) \rangle +$ $\langle \Gamma(B_q \to \overline{D}_q u_q) \rangle$ to CP-averaged rates of appropriate B^{\pm} or flavour-specific B_q decays.

If we keep the hadronic parameter x_q and the associated strong phase δ_q as "unknown", free parameters in the expressions for the $\langle S_q \rangle_{\pm}$, we obtain

$$|\sin(\phi_q + \gamma)| \ge |\langle S_q \rangle_+|, \quad |\cos(\phi_q + \gamma)| \ge |\langle S_q \rangle_-|, \quad (19)$$

which can straightforwardly be converted into bounds on $\phi_q + \gamma$. If x_q is known, stronger constraints are implied by

$$|\sin(\phi_q + \gamma)| \ge |s_+|, \quad |\cos(\phi_q + \gamma)| \ge |s_-|.$$
 (20)

Once s_+ and s_- are known, we may of course determine $\phi_q + \gamma$ through the "conventional" approach, using (16). However, the bounds following from (20) provide essentially the same information and are much simpler to implement. Moreover, as discussed in detail in [5] for several examples, the bounds following from the B_s and B_d modes may be highly complementary, thereby providing particularly narrow, theoretically clean ranges for γ .

Let us now further exploit the complementarity between the $B_s^0 \to D_s^{(*)+}K^-$ and $B_d^0 \to D^{(*)+}\pi^-$ modes. If we look at their decay topologies, we observe that these channels are related to each other through an interchange of all down and strange quarks. Consequently, the U-spin flavour symmetry of strong interactions implies $a_s = a_d$ and $\delta_s = \delta_d$, where $a_s = x_s/R_b$ and $a_d = -x_d/(\lambda^2 R_b)$ are the ratios of hadronic matrix elements entering x_s and x_d , respectively. There are various possibilities to implement these relations. A particularly simple picture emerges if we assume that $a_s = a_d$ and $\delta_s = \delta_d$, which yields

$$\tan \gamma = -\left[\frac{\sin \phi_d - S \sin \phi_s}{\cos \phi_d - S \cos \phi_s}\right] \stackrel{\phi_s = 0^\circ}{=} -\left[\frac{\sin \phi_d}{\cos \phi_d - S}\right].$$
(21)

Here we have introduced

$$S = -R \left[\frac{\langle S_d \rangle_+}{\langle S_s \rangle_+} \right] \text{ with } R = \left(\frac{1 - \lambda^2}{\lambda^2} \right) \left[\frac{1}{1 + x_s^2} \right], \quad (22)$$

where R can be fixed from untagged B_s rates through R = (23)

$$\left(\frac{f_K}{f_\pi}\right)^2 \frac{\Gamma(\overline{B_s^0} \to D_s^{(*)+}\pi^-) + \Gamma(B_s^0 \to D_s^{(*)-}\pi^+)}{\langle \Gamma(B_s \to D_s^{(*)+}K^-) \rangle + \langle \Gamma(B_s \to D_s^{(*)-}K^+) \rangle}$$

Alternatively, we may only assume that $\delta_s = \delta_d$ or that $a_s = a_d$. Apart from features related to multiple discrete ambiguities, the most important advantage with respect to the "conventional" approach is that the experimental resolution of the x_q^2 terms is not required. In particular, x_d does not have to be fixed, and x_s may only enter through a $1 + x_s^2$ correction, which can straightforwardly be determined through untagged B_s rate measurements. In the most refined implementation of this strategy, the measurement of x_d/x_s would only be interesting for the inclusion of U-spin-breaking effects in a_d/a_s . Moreover, we may obtain interesting insights into hadron dynamics and U-spin-breaking effects.

4 Conclusions

We have discussed new strategies to explore CP violation through neutral B_q decays. In the first part, we have shown that $B_d \to DK_{\mathcal{S}(\mathcal{L})}, B_s \to D\eta^{(')}, D\phi, \dots$ modes provide theoretically clean, efficient and unambiguous extractions of $\tan \gamma$ if we combine an "untagged" rate asymmetry with mixing-induced observables. On the other hand, their $B_s \to D_{\pm} K_{\rm S(L)}, B_d \to D_{\pm} \pi^0, D_{\pm} \rho^0, \dots$ counterparts are not as attractive for the determination of γ , but allow extremely clean extractions of the mixing phases ϕ_s and ϕ_d , which may be particularly interesting for the ϕ_s case. In the second part, we have discussed interesting new aspects of $B_s \to D_s^{(*)\pm} K^{\mp}$, ... and $B_d \to D^{(*)\pm} \pi^{\mp}$, ... decays. The observables of these modes provide clean bounds on $\phi_q + \gamma$, where the resulting ranges for γ may be highly complementary in the B_s and B_d cases, thereby yielding stringent constraints on γ . Moreover, it is of great advantage to combine the $B_d \to D^{(*)\pm}\pi^{\mp}$ modes with their U-spin counterparts $B_s \to D_s^{(*)\pm} K^{\mp}$, allowing us to overcome the main problems of the "conventional" strategies to deal with these modes. We strongly encourage detailed feasibility studies of these new strategies.

References

- 1. R. Fleischer: Phys. Rep. **370**, 537 (2002)
- 2. R. Fleischer: Phys. Lett. B 562, 234 (2003)
- 3. R. Fleischer: Nucl. Phys. B 659, 321 (2003)
- 4. B. Kayser, D. London: Phys. Rev. D 61, 116013 (2000)
- 5. R. Fleischer: Nucl. Phys. B 671, 459 (2003)
- I. Dunietz, R.G. Sachs: Phys. Rev. D 37, 3186 (1988) [E: D 39, 3515 (1989)]; I. Dunietz: Phys. Lett. B 427, 179 (1998); D.A. Suprun et al.: Phys. Rev. D 65, 054025 (2002)
- 7. R. Aleksan et al.: Z. Phys. C 54, 653 (1992)